An outcrop analog for the Colville Foreland Basin from the southern Andes: Clinoforms of the Magallanes Basin, Chile

Stephen M. Hubbard1, Brian Romans2, Lisa Stright3, Erin Pemberton4, Ben Daniels1, Tom Peploe1

1University of Calgary, Calgary, Alberta, Canada
2Virginia Polytechnic Institute and State University, Blacksburg, VA
3Colorado State University, Fort Collins, CO
4ConocoPhillips Alaska, Inc., Anchorage, AK

shubbard@ucalgary.ca

Clinoforms with >1000 m of relief that are at least 40 km long crop-out in the Magallanes Basin of southern Chile, recording the axial filling of a deep-water foreland during the Late Cretaceous. Fluvial- and wave-influenced deltaic deposits represent the upper, flat portions of the sigmoidal slope profiles (topset strata). Mudstone, siltstone, and a notable paucity of sandstone generally characterize upper- to lower-slope units (foreset to bottomset strata). However, punctuated delivery of coarse-grained sediment off the shelf edge is evident from channelized bodies composed of conglomerate lags and thick sandstone units. The clinoform-dominated stratigraphic architecture, scale and facies of the outcrop belt have been shown to share many analogous attributes with the Brookian-aged foreland basin fill of the North Slope, Alaska.

In 2009, a presentation to the AGS focused on a bourgeoning understanding of the recently discovered outcrop belt. This follow-up presentation will focus on the results of more than a decade of subsequent research, including facies characteristics and their distributions, geometrical characterization of reservoir-scale bodies, auto- and allo-genic controls on clinoform development (e.g., sediment supply, antecedent topography), and synthetic seismic responses of various portions of the immense outcrop belt. Overall, basin margin evolution and turbidite system characterization has been a primary focus over the last decade. However, a renewed focus on topset sedimentology and stratigraphy is a major current area of research, leveraging the unique opportunity to investigate the entirety of well-exposed shelf, slope to basin floor sediment routing systems.
About the Speaker:

Steve Hubbard joined the faculty in the Department of Geoscience at the University of Calgary in 2006, shortly after completing his PhD at Stanford University. Prior to his PhD he obtained BSc and MSc degrees at the University of Alberta and worked as a petroleum geologist at Shell Canada. His research, teaching and student mentorship is focused on topics in siliciclastic sedimentology and stratigraphy, as well as applications to petroleum geology. He specializes in the processes and products of channelized depositional systems, as well as convergent margin sedimentary basins.

Dip-oriented cross-section across the Late Cretaceous Magallanes foreland basin, Southern Chile. Basin-axial propagation of high-relief clinoforms (> 1 km) infilled the deep-water foreland setting.
From the President’s Desk:

Well that didn’t go according to plan.

Last Spring, we were supposed to be meeting in Fairbanks for our Technical Conference, browsing posters, attending talks, socializing with students, and touring the permafrost tunnel. April now seems so long ago.

Like many of our work and school lives, AGS quickly transformed to an all-virtual existence. Yet we finished the year with an increase in both active members and [virtual] lecture attendees. Even more importantly, we awarded eight students with a combination of AGS and Don Richter Memorial scholarships.

We are ready for a new year. This month, we welcome back Dr. Stephen Hubbard as an AAPG Distinguished Lecturer to present his follow-up work in the Magallanes Basin as a potential outcrop analog for the Brookian petroleum plays. Though we are not ready to meet in person, AGS is committed to continue delivering both a relevant and diverse program of technical presentations and a competitive and significant student scholarship program. We will continue the long tradition of uniting those interested in the geology of Alaska.

Thank you for your interest, participation, membership, and support.

See you on the 17th,
Andrew Dewhurst
To keep up social distancing and still get outside during these disconcerting times, I focused on an exploration of the Chugach Mts. near Anchorage this summer. In addition to incredible scenery and little human contact, one of the intriguing geologic features encountered were rock glaciers. These geomorphic features occur in mountainous areas from south-central Alaska to the Brooks Range with some excellent examples right here in our own backyard (figures 1 and 2). It is interesting to note that the term “rock glacier” was first used by USGS geologist S.R. Capps, (1910) in Alaska due to investigations in the Kennecott region of the Wrangell Mountains.

Rock glaciers consist of a mass of loose rock or talus with lobate wrinkles and ridges, giving one the impression of down-slope movement. As such they exhibit many of the same features inherent in true glaciers, including a lobate front or tongue, lateral moraines, and crescent-shaped ridges. Many are characterized by steep fronts at near the angle of repose. Most occur in areas of high latitude or altitude, in areas of steep cliffs with poor snow cover, and bedrock broken by frost action. Observations by researchers indicate that rock glaciers flow due to the presence of interstitial and/or underlying ice.

Controversy surrounds the origin of rock glaciers, but they appear to be of two types: ice-cored and ice-cemented. Ice-cored form when rock talus debris is deposited on the surface of a pre-existing glacier; the source area being the steep walls of a glacial cirque. The underlying glacial ice provides a relatively smooth surface for down-slope movement of the talus. Ice-cemented rock glaciers can form when ice and snow melt on the surface of a talus slope. The resulting water filters down through the underlying talus freezing to ice at depth. The ice reduces cohesion between the rock fragments, enabling down-slope movement. Some rock glaciers may have formed by a combination of these two modes of origin. Whatever the formation history, ice is the mechanism which provides the lubrication for the fractured rock to slowly move downslope. A mining tunnel driven through a rock glacier in Colorado, first passed through loose rock, then through rock with interstitial ice, then finally passing through a small quantity of glacial ice before entering solid rock.

Some fine examples of rock glaciers can be found in the Chugach Mts. near Anchorage. What appears to be an active rock glacier occurs in a cirque on the northwest aspect of Mt. Williwaw at the headwaters of the north fork of Campbell Creek (Figure 1). Evidence of recent movement includes a partially unstable frontal lobe. Also, the turquoise-colored water in the lake at the rock glacier foot would indicate that fine rock flour is being produced by the grinding together of moving rocks and introduced into the lake. The result being the characteristic glacial lake color.

Another good example occurs in the Penguin Creek drainage east of Anchorage (Figure 2). This rock glacier also shows signs of recent movement, including a steep unstable frontal lobe and minimal vegetation on its surface.

References:
Send a photo of your pet rock to: ken.helmold@alaska.gov
Alaska’s Oil & Gas Consultants

- Geoscience
- Engineering
- Operations
- Project Management

From the North Slope to Cook Inlet, PRA’s professional and highly skilled consultants know and understand the regional geology, the unique operating conditions, and the regulatory environment, having managed exploration and development projects across Alaska since 1997.

3601 C Street, Suite 1424
Anchorage, AK 99503
907-272-1232
www.petroak.com
info@petroak.com
Integrate Geoscience and Drilling
Capitalize on Your Wellbore Data Investment

Only the Techlog* wellbore software platform brings all of your wellbore-centric data together for better decisions—from exploration to development. With its advanced acoustics, geomechanics, and complex lithology solver, the Techlog platform improves formation evaluation in every well. This advanced technology enhances characterization and increases understanding of drilling hazards—even in the most challenging reservoirs.
MEMBERSHIP INFORMATION

AGS annual memberships expire November 1. The annual membership fee is $25/year ($5 for students). You may download a membership application from the AGS website and return it at a luncheon meeting, or mail it to the address above.

Contact membership coordinator Kirk Sherwood with changes or updates (e-mail: membership@alaskageology.org; phone: 907-334-5337)

All AGS publications are now available for on-line purchase on our website. Check to see the complete catalogue:

http://www.alaskageology.org/publications1.html

ADVERTISING RATES

Advertisements may be purchased at the following rates:

1/10 Page—$190/9mo, $75/1mo; size=1.8 x 3.5 inch
1/4 Page—$375/9mo, $95/1mo; size=4.5 x 3.5 or 2.2 x 7.5 inch
1/3 Page—$470/9mo, $105/1mo; size=7.0 x 3.5 or 3.0 x 7.5 inch
1/2 Page—$655/9mo, $125/1mo; size=9.0 x 3.5 or 4.5 x 7.5 inch
Full Page—$1000/9mo, $165/1mo; size=7.5 x 9.0 inch

1mo rate=(9mo rate/9)+$50 (rounded up).

Contact Keith Torrance at 907-952-1288 for advertising information.

It’s PFD Application Time!

Did you know that you can support the society through Pick.Click.Give? When you fill out your PFD application, just select Alaska Geological Society, Inc. in the list of non-profits and you can help AGS to promote the uniqueness of Alaskan Geology and provide for education, geologic research, and networking to all who are interested as well as provide scholarships to students across a wide range of geologic topics.

https://www.pickclickgive.org/index.cfm/pfdorgs.info/Alaska-Geological-Society-Inc

• From the PFD home page http://pfd.alaska.gov/Application, select the green “Add or Change Your Pick.Click.Give. Donation” button

• You can change/add your donation at any time throughout 2020

Membership Note

Membership renewal is November 1

Annual dues are:

- **Full member** - $25
- **Student member** - $5
- **Lifetime membership** - $250

2018 - 2019 Alaska Geological Society Board, Committees and Delegates

<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Phone</th>
<th>e-mail</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>Andy Dewhurst</td>
<td>907-265-6229</td>
<td>andrew.dewhurst@conocophillips.com</td>
<td>ConocoPhillips</td>
</tr>
<tr>
<td>Past-President</td>
<td>Steve Carhart</td>
<td>907-748-0494</td>
<td>steve.carhart@alaskageology.org</td>
<td>ConocoPhillips</td>
</tr>
<tr>
<td>President-Elect</td>
<td>Laura Gregersen</td>
<td>907-375-8240</td>
<td>laura.gregersen@alaska.gov</td>
<td>AK DOG</td>
</tr>
<tr>
<td>Vice-President</td>
<td>Tom Homza</td>
<td>907-301-2851</td>
<td>thomas.homza@shell.com</td>
<td>Shell</td>
</tr>
<tr>
<td>Treasurer</td>
<td>Corey Ramstad</td>
<td>907-777-8427</td>
<td>cramstad@hilcorp.com</td>
<td>Hilcorp</td>
</tr>
<tr>
<td>Secretary</td>
<td>Heather Beat</td>
<td>907-443-3842</td>
<td>Heather.a.beat@gmail.com</td>
<td>Glacier Oil & Gas</td>
</tr>
<tr>
<td>Director 2019-2021</td>
<td>Jennifer Crews</td>
<td>907-263-4516</td>
<td>jennifer.r.crews@conocophillips.com</td>
<td>ConocoPhillips</td>
</tr>
<tr>
<td>Director 2019-2021</td>
<td>Kirk Sherwood</td>
<td>907-334-5337</td>
<td>sherwook@mtaonline.net</td>
<td>ConocoPhillips</td>
</tr>
<tr>
<td>Director 2019-2021</td>
<td>Monte Mabry</td>
<td>907-230-4488</td>
<td>monte.mabry@live.com</td>
<td>ConocoPhillips</td>
</tr>
<tr>
<td>Director 2020-2022</td>
<td>Steve Wright</td>
<td>907-854-2362</td>
<td>AlaskaGeo@aol.com</td>
<td>Consultant</td>
</tr>
<tr>
<td>Director 2020-2022</td>
<td>Sean Regan</td>
<td>907-474-5386</td>
<td>sregan5@alaska.edu</td>
<td>UAF</td>
</tr>
<tr>
<td>Director 2020-2022</td>
<td>Matt Frankforter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAPG Delegate</td>
<td>Andy Dewhurst</td>
<td>907-265-6229</td>
<td>andrew.dewhurst@conocophillips.com</td>
<td>AK DOG</td>
</tr>
<tr>
<td>PSAAPG AGS Representative</td>
<td>Andy Dewhurst</td>
<td>907-265-6229</td>
<td>andrew.dewhurst@conocophillips.com</td>
<td>AK DOG</td>
</tr>
<tr>
<td>Advertising</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education/Science Fair</td>
<td>Jana DaSilva Lage</td>
<td>907-980-9368</td>
<td>jdasilva5@hotmail.com</td>
<td>APICC</td>
</tr>
<tr>
<td>Field Trips</td>
<td>Marwan Wartes</td>
<td>907-451-5056</td>
<td>marwan.wartes@alaska.gov</td>
<td>AK DGGS</td>
</tr>
<tr>
<td>Bylaws</td>
<td>Sue Karl</td>
<td>907-441-8010</td>
<td>smkar107@gmail.com</td>
<td>USGS</td>
</tr>
<tr>
<td>Memberships</td>
<td>Kirk Sherwood</td>
<td>907-334-5337</td>
<td>membership@alaskageology.org</td>
<td></td>
</tr>
<tr>
<td>Newsletter Editor</td>
<td>Ken Helmold</td>
<td>907-269-8673</td>
<td>ken.helmold@alaska.gov</td>
<td>AK DOG</td>
</tr>
<tr>
<td>Publications</td>
<td>Alexandra Busk</td>
<td>907-696-0079</td>
<td>alexandra.busk@alaska.gov</td>
<td>AK DGGS</td>
</tr>
<tr>
<td>Scholarship</td>
<td>Sue Karl</td>
<td>907-441-8010</td>
<td>smkar107@gmail.com</td>
<td>USGS</td>
</tr>
<tr>
<td>Website</td>
<td>Jan Hazen</td>
<td></td>
<td>homesteadgraphics@gmail.com</td>
<td>Consultant</td>
</tr>
<tr>
<td>Fundraising</td>
<td>Jennifer Crews</td>
<td>907-263-4516</td>
<td>jennifer.r.crews@conocophillips.com</td>
<td>ConocoPhillips</td>
</tr>
</tbody>
</table>

Additional Ways to Support AGS:

Support us when you shop. Sign in to Amazon Smile instead of Amazon and a portion of your purchase is donated directly to the AGS. Go to: http://smile.amazon.com